Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Methods Mol Biol ; 2099: 53-68, 2020.
Article in English | MEDLINE | ID: covidwho-1292546

ABSTRACT

Over the past two decades, several coronavirus (CoV) infectious clones have been engineered, allowing for the manipulation of their large viral genomes (~30 kb) using unique reverse genetic systems. These reverse genetic systems include targeted recombination, in vitro ligation, vaccinia virus vectors, and bacterial artificial chromosomes (BACs). Quickly after the identification of Middle East respiratory syndrome-CoV (MERS-CoV), both in vitro ligation and BAC-based reverse genetic technologies were engineered for MERS-CoV to study its basic biological properties, develop live-attenuated vaccines, and test antiviral drugs. Here, I will describe how lambda red recombination can be used with the MERS-CoV BAC to quickly and efficiently introduce virtually any type of genetic modification (point mutations, insertions, deletions) into the MERS-CoV genome and recover recombinant virus.


Subject(s)
Bacteriophage lambda/genetics , Chromosomes, Artificial, Bacterial/genetics , Coronavirus Infections/virology , Genome, Viral/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Viral Vaccines/genetics , Coronavirus Infections/prevention & control , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Genetic Engineering , Homologous Recombination , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Mutation , Vaccines, Attenuated/genetics , Vaccinia virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL